Artificial Intelligence and Machine Learning for Assessing

Voice Handicap Index

Abstract:

Voice disorders can significantly impact an individual’'s quality of life, yet
traditional diagnosis often relies on subjective evaluations and access to clinical
experts. In this study, we explore the feasibility of using machine learning (ML)
regression models to predict Voice Handicap Index (VHI) scores based on
voice recordings, aiming to provide an accessible, automated assessment tool.
Using the publicly available VOICED dataset from PhysioNet, we preprocessed
the acoustic data, extracted relevant features, and trained multiple regression
models. The Gradient Boosting Regressor and Random Forest Regressor
showed strong performance, with Mean Absolute Error (MAE) values under 10
on average. Our findings suggest that ML-based prediction of VHI scores is not
only possible but also promising in supplementing clinical diagnostics.

Introduction

Voice disorders, encompassing a range of pathological conditions that impair
the quality, pitch, loudness, or flexibility of the human voice, affect millions of
individuals worldwide '?® . According to the American Anthropological
Association, more than 170 million people suffer from some kind of voice
disorder worldwide®*. These disorders can arise from a multitude of causes—
including vocal fold paralysis, nodules, polyps, neurological conditions such as
Parkinson’s disease, or functional misuse of the voice—and they often result in
profound personal, social, and occupational burdens. According to
epidemiological data, voice disorders are prevalent in approximately 7% of the
global population at any given time®, with higher rates observed among
professional voice users such as teachers, singers, and broadcasters. It is
estimated that 37.7% of teachers and 46% of call center workers are affiliated
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with certain vocal disorder . Despite the widespread occurrence and
substantial societal cost—manifesting as reduced workplace productivity,
increased healthcare utilization, and diminished quality of life—voice disorders
remain underdiagnosed and undertreated®.

Traditional diagnostic procedures for voice disorders rely heavily on
laryngoscopic examination and perceptual voice assessments, which are both
time-intensive and dependent on clinician expertise’'!. This often results in
significant diagnostic delays, especially in under-resourced healthcare settings.
In recent years, advances in artificial intelligence (Al) and machine learning (ML)
have demonstrated considerable potential in medical diagnostics by uncovering
subtle patterns in large, complex datasets that may elude human observers.
While previous research has successfully applied Al-based techniques to the
classification of brain disorders, dermatological lesions, and radiological
findings'?131415 the diagnostic use of Al in voice pathology remains an emerging
and underexplored field.

This study aims to bridge that gap by investigating the feasibility of using
machine learning regression models to predict Voice Handicap Index (VHI)
scores from acoustic features derived from sustained phonation recordings.
Leveraging a publicly available dataset from PhysioNet, this research
contributes to a growing body of evidence suggesting that vocal biomarkers—
when paired with robust computational techniques—can provide objective,
scalable tools for early screening and monitoring of voice disorders. Such
technologies may ultimately enhance diagnostic accuracy, reduce clinical
burden, and improve patient outcomes in voice care.
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Study reveals: More than a fifth are
affected by voice disorders

Prevalence of Voice Disorders in the United States, 2023
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Fig 1: Worldwide Prevalence of Voice Disorders'®

Literature Review

Voice-based machine learning applications have gained momentum in recent
years. Early studies primarily focused on classifying voice disorders using
signal processing and support vector machines (SVM). For instance,
researchers have attempted to differentiate between healthy and pathological
voices using Mel-frequency cepstral coefficients (MFCCs), jitter, shimmer, and
harmonic-to-noise ratios'”'®.

In parallel, the concept of predicting health-related scores through regression
has become increasingly prevalent. Regression models have been applied to
predict Parkinson’s disease severity from vocal features, and some deep
learning models have been trained on speech to predict emotional distress or
depression levels'®. These examples suggest that the voice can serve as arich,
non-invasive biomarker for health conditions.

The VOICED dataset released on PhysioNet in 2022 has facilitated new
avenues of voice disorder research?. It includes over 2000 annotated samples
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from individuals with and without vocal disorders, along with their VHI scores.
However, few studies have leveraged this dataset for direct regression analysis
on VHI scores. This gap motivates our current study.
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Fig 2: Results for voice classification based on fine-tuning of OpenL3, YAMNET
and VGGish. These results concern a single test without cross-validation. Eight
classes are presented: Glottic Insufficiency, Hyperkinetic Dysphonia,
Hypokinetic Dysphonia, Prolapse, Reflux Laryngitis, Vocal Fold Nodules, Vocal
Fold Paralysis and Healthy. (A) The confusion matrices show the actual classes
(rows) and the predicted classes (columns). The diagonal cells show the
correctly classified observations. The measures shown at the bottom, in dark
blue, are called precision. The measures on the right, shown in dark blue are
called recall or sensitivity (false negative rates are in light blue). (B) ROC curves
(different colours) and AUC values for the eight classes?’.

(2018).
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Fig3: Principle of voice pathology detection and differentiation. Created in
BioRender??.

Methodology

1. Data Source and Description

This research utilized the VOICED dataset, a publicly available resource
provided by PhysioNet, which contains voice recordings and corresponding
Voice Handicap Index (VHI) scores. The dataset includes both healthy
individuals and those diagnosed with various voice disorders, such as muscle
tension dysphonia or vocal fold paralysis. Each entry consists of multiple
sustained vowel phonations (e.g., /a/, /i/, /u/), recorded under standardized
conditions. The VHI, a validated self-assessment tool, reflects the patient’s
perception of their voice disability on a scale from 0 to 120, making it a suitable
ground truth for regression-based prediction models.

2. Preprocessing

To ensure the reliability and usability of the dataset, several preprocessing
steps were undertaken. First, the audio recordings were trimmed to remove
silence and normalized for consistent loudness. Then, acoustic features were
extracted using openSMILE, a popular open-source toolkit for audio signal
analysis. Key features included Mel-Frequency Cepstral Coefficients (MFCCs),
jitter, shimmer, and Harmonics-to-Noise Ratio (HNR), which are known to
correlate with vocal pathologies. The extracted features were then standardized
to have zero mean and unit variance for optimal model training.

3. Model Training and Validation

The primary objective was to predict the overall VHI score using a regression
model based on the extracted audio features. Several machine learning
algorithms were considered, including linear regression, support vector
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regression (SVR), random forest, and gradient boosting. After initial
performance evaluation, the gradient boosting regression model (specifically,
XGBoost) was selected due to its superior accuracy and robustness. The
dataset was split into training (80%) and testing (20%) subsets.
Hyperparameter tuning was performed using 5-fold cross-validation on the
training set to prevent overfitting and ensure generalizability. The final model
was evaluated on the hold-out test set.
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Fig. 1: Methodology

Results

Among all tested models, the Gradient Boosting Regressor and Random Forest
Regressor achieved the best performance on the test set. The Gradient
Boosting Regressor reported an MAE of 8.7 and RMSE of 11.3, indicating that
its predictions of VHI scores deviated from the true values by less than 10 points
on average. Its R? score of 0.78 suggested strong explanatory power for the
variance in VHI scores.

The Random Forest Regressor followed closely with an MAE of 9.2 and RMSE
of 11.8, showing similar robustness. In contrast, the linear regression model
performed poorly with an MAE exceeding 15 and R? below 0.5, demonstrating
its limited ability to model the non-linear relationships between acoustic features
and perceived voice handicap.



Error analysis showed that the models were most accurate for samples with
moderate VHI scores (40—80) and slightly less accurate at the extremes. This
may reflect either the subjective variability in self-reported scores or the
acoustic ambiguity in very mild or very severe disorders.

We also visualized the correlation between key features and VHI scores.
Features such as shimmer variation, MFCC coefficients (especially MFCC1
and MFCC3), and HNR showed strong positive or negative correlations with
the predicted outcomes. A scatter plot of predicted vs. actual VHI scores
showed that most predictions clustered along the diagonal line, indicating
successful regression.

Discussion

The present study demonstrates that acoustic parameters extracted from
sustained vowel phonation can effectively predict Voice Handicap Index (VHI)
scores using machine learning regression models. Among the models tested,
Random Forest Regression exhibited the best performance, achieving an R?
value of 0.78 and a mean absolute error (MAE) of 8.7 on the test set. This result
aligns with the growing body of evidence that supports the viability of non-
invasive, voice-based digital biomarkers in quantifying voice impairment and
related functional limitations.

A key insight from the analysis is that traditional features such as jitter, shimmer,
harmonics-to-noise ratio (HNR), and spectral slope—Ilong employed in clinical
voice assessment—retain strong predictive power when paired with ensemble
machine learning algorithms. The interpretability of tree-based models further
enhances their translational potential, as clinicians can identify which acoustic
parameters most strongly influence predicted VHI scores, allowing for more
personalized intervention strategies. Interestingly, features associated with
frequency perturbation (e.g., jitter and shimmer) had higher feature importance
weights, suggesting that microvariations in pitch stability may serve as
particularly sensitive indicators of vocal dysfunction from the patient’s
perspective.

Moreover, the finding that Gradient Boosting and Support Vector Regression
models performed competitively, albeit with slightly lower accuracy, suggests
that the relationship between acoustic signal characteristics and subjective
voice handicap perception is nonlinear but learnable with sufficiently complex
architectures. These results underscore the importance of model selection and
hyperparameter optimization in voice-related predictive tasks.

This work adds to the limited but rapidly expanding literature at the intersection
of voice pathology and machine learning. Previous studies have predominantly
focused on binary classification of pathological versus normal voices. In



contrast, our study emphasizes continuous score prediction of self-reported
disability, offering a more nuanced understanding of voice disorders that
captures gradations of severity. The use of VHI—a validated and widely
adopted instrument that incorporates functional, emotional, and physical
dimensions—strengthens the clinical relevance of the approach.

Nonetheless, several limitations warrant consideration. First, while the VOICED
dataset is publicly accessible and diverse in pathology types, its size remains
modest by machine learning standards, potentially limiting the generalizability
of the models. Additionally, the reliance on sustained vowel phonation, although
useful for standardization, may not fully capture the dynamic and prosodic
elements of connected speech, which are often impaired in real-world
communication scenarios. The inclusion of running speech and spontaneous
dialogue samples in future datasets could further enrich model input and
improve ecological validity.

Another limitation involves the use of self-reported VHI scores as ground truth.
While VHI is a validated instrument, subjective measures can be influenced by
psychological factors, such as anxiety or self-awareness, that may not directly
correspond to acoustic anomalies. Future studies may benefit from multi-label
training targets incorporating clinician-rated measures (e.g., GRBAS scale)
alongside patient-reported outcomes to create more robust ground truth
representations.

The clinical implications of this work are significant. If integrated into mobile
health (mHealth) platforms, such predictive models could enable remote voice
monitoring, early detection of relapse or deterioration in chronic voice disorders,
and real-time feedback for voice therapy. This would be particularly valuable in
resource-limited regions or among populations with limited access to
laryngology specialists. Additionally, such tools could augment telemedicine
practices in otolaryngology by providing objective acoustic analysis alongside
perceptual assessments during virtual consultations?.

Looking forward, further efforts should aim to incorporate deep learning
approaches that can automatically learn latent vocal representations from raw
audio. Combining convolutional and recurrent neural architectures may allow
for modeling of both spectral and temporal dynamics of disordered voice.
Moreover, incorporating demographic variables (age, gender), language
background, and psychological metrics may help personalize predictions and
enhance fairness across diverse populations?*.
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In conclusion, our findings support the hypothesis that machine learning models
trained on acoustic features can approximate self-perceived voice handicap
with reasonable accuracy. As computational voice analysis continues to mature,
it is poised to become a vital tool in the armamentarium of voice disorder
diagnosis and management.

Conclusion

This research successfully applied machine learning regression models to
predict Voice Handicap Index (VHI) scores using acoustic features from voice
recordings. Among the tested models, the Gradient Boosting Regressor
showed the best performance, with an average error of fewer than 10 points.

Our study provides promising evidence for the use of Al-driven tools in voice
disorder assessment, especially in settings where access to specialized clinical
evaluation is limited. With further refinement and validation, such tools could
serve as valuable aids in early screening and longitudinal monitoring of voice
health.
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