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Abstract: 
Voice disorders can significantly impact an individual’s quality of life, yet 
traditional diagnosis often relies on subjective evaluations and access to clinical 
experts. In this study, we explore the feasibility of using machine learning (ML) 
regression models to predict Voice Handicap Index (VHI) scores based on 
voice recordings, aiming to provide an accessible, automated assessment tool. 
Using the publicly available VOICED dataset from PhysioNet, we preprocessed 
the acoustic data, extracted relevant features, and trained multiple regression 
models. The Gradient Boosting Regressor and Random Forest Regressor 
showed strong performance, with Mean Absolute Error (MAE) values under 10 
on average. Our findings suggest that ML-based prediction of VHI scores is not 
only possible but also promising in supplementing clinical diagnostics. 
 
Introduction 
Voice disorders, encompassing a range of pathological conditions that impair 
the quality, pitch, loudness, or flexibility of the human voice, affect millions of 
individuals worldwide 123 . According to the American Anthropological 
Association, more than 170 million people suffer from some kind of voice 
disorder worldwide4. These disorders can arise from a multitude of causes—
including vocal fold paralysis, nodules, polyps, neurological conditions such as 
Parkinson’s disease, or functional misuse of the voice—and they often result in 
profound personal, social, and occupational burdens. According to 
epidemiological data, voice disorders are prevalent in approximately 7% of the 
global population at any given time 5 , with higher rates observed among 
professional voice users such as teachers, singers, and broadcasters. It is 
estimated that 37.7% of teachers and 46% of call center workers are affiliated 
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with certain vocal disorder 67 . Despite the widespread occurrence and 
substantial societal cost—manifesting as reduced workplace productivity, 
increased healthcare utilization, and diminished quality of life—voice disorders 
remain underdiagnosed and undertreated89. 
 
Traditional diagnostic procedures for voice disorders rely heavily on 
laryngoscopic examination and perceptual voice assessments, which are both 
time-intensive and dependent on clinician expertise1011. This often results in 
significant diagnostic delays, especially in under-resourced healthcare settings. 
In recent years, advances in artificial intelligence (AI) and machine learning (ML) 
have demonstrated considerable potential in medical diagnostics by uncovering 
subtle patterns in large, complex datasets that may elude human observers. 
While previous research has successfully applied AI-based techniques to the 
classification of brain disorders, dermatological lesions, and radiological 
findings12131415, the diagnostic use of AI in voice pathology remains an emerging 
and underexplored field. 
This study aims to bridge that gap by investigating the feasibility of using 
machine learning regression models to predict Voice Handicap Index (VHI) 
scores from acoustic features derived from sustained phonation recordings. 
Leveraging a publicly available dataset from PhysioNet, this research 
contributes to a growing body of evidence suggesting that vocal biomarkers—
when paired with robust computational techniques—can provide objective, 
scalable tools for early screening and monitoring of voice disorders. Such 
technologies may ultimately enhance diagnostic accuracy, reduce clinical 
burden, and improve patient outcomes in voice care. 
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Fig 1: Worldwide Prevalence of Voice Disorders16 
 
Literature Review 
Voice-based machine learning applications have gained momentum in recent 
years. Early studies primarily focused on classifying voice disorders using 
signal processing and support vector machines (SVM). For instance, 
researchers have attempted to differentiate between healthy and pathological 
voices using Mel-frequency cepstral coefficients (MFCCs), jitter, shimmer, and 
harmonic-to-noise ratios1718. 
 
In parallel, the concept of predicting health-related scores through regression 
has become increasingly prevalent. Regression models have been applied to 
predict Parkinson’s disease severity from vocal features, and some deep 
learning models have been trained on speech to predict emotional distress or 
depression levels19. These examples suggest that the voice can serve as a rich, 
non-invasive biomarker for health conditions. 
 
The VOICED dataset released on PhysioNet in 2022 has facilitated new 
avenues of voice disorder research20. It includes over 2000 annotated samples 
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from individuals with and without vocal disorders, along with their VHI scores. 
However, few studies have leveraged this dataset for direct regression analysis 
on VHI scores. This gap motivates our current study. 

 
Fig 2: Results for voice classification based on fine-tuning of OpenL3, YAMNET 
and VGGish. These results concern a single test without cross-validation. Eight 
classes are presented: Glottic Insufficiency, Hyperkinetic Dysphonia, 
Hypokinetic Dysphonia, Prolapse, Reflux Laryngitis, Vocal Fold Nodules, Vocal 
Fold Paralysis and Healthy. (A) The confusion matrices show the actual classes 
(rows) and the predicted classes (columns). The diagonal cells show the 
correctly classified observations. The measures shown at the bottom, in dark 
blue, are called precision. The measures on the right, shown in dark blue are 
called recall or sensitivity (false negative rates are in light blue). (B) ROC curves 
(different colours) and AUC values for the eight classes21. 
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Fig3: Principle of voice pathology detection and differentiation. Created in 
BioRender22. 
 
Methodology 
1. Data Source and Description 
This research utilized the VOICED dataset, a publicly available resource 
provided by PhysioNet, which contains voice recordings and corresponding 
Voice Handicap Index (VHI) scores. The dataset includes both healthy 
individuals and those diagnosed with various voice disorders, such as muscle 
tension dysphonia or vocal fold paralysis. Each entry consists of multiple 
sustained vowel phonations (e.g., /a/, /i/, /u/), recorded under standardized 
conditions. The VHI, a validated self-assessment tool, reflects the patient’s 
perception of their voice disability on a scale from 0 to 120, making it a suitable 
ground truth for regression-based prediction models. 
 
2. Preprocessing 
To ensure the reliability and usability of the dataset, several preprocessing 
steps were undertaken. First, the audio recordings were trimmed to remove 
silence and normalized for consistent loudness. Then, acoustic features were 
extracted using openSMILE, a popular open-source toolkit for audio signal 
analysis. Key features included Mel-Frequency Cepstral Coefficients (MFCCs), 
jitter, shimmer, and Harmonics-to-Noise Ratio (HNR), which are known to 
correlate with vocal pathologies. The extracted features were then standardized 
to have zero mean and unit variance for optimal model training. 
 
3. Model Training and Validation 
The primary objective was to predict the overall VHI score using a regression 
model based on the extracted audio features. Several machine learning 
algorithms were considered, including linear regression, support vector 
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regression (SVR), random forest, and gradient boosting. After initial 
performance evaluation, the gradient boosting regression model (specifically, 
XGBoost) was selected due to its superior accuracy and robustness. The 
dataset was split into training (80%) and testing (20%) subsets. 
Hyperparameter tuning was performed using 5-fold cross-validation on the 
training set to prevent overfitting and ensure generalizability. The final model 
was evaluated on the hold-out test set. 

 
Fig. 1: Methodology 
 
Results 
Among all tested models, the Gradient Boosting Regressor and Random Forest 
Regressor achieved the best performance on the test set. The Gradient 
Boosting Regressor reported an MAE of 8.7 and RMSE of 11.3, indicating that 
its predictions of VHI scores deviated from the true values by less than 10 points 
on average. Its R² score of 0.78 suggested strong explanatory power for the 
variance in VHI scores. 
 
The Random Forest Regressor followed closely with an MAE of 9.2 and RMSE 
of 11.8, showing similar robustness. In contrast, the linear regression model 
performed poorly with an MAE exceeding 15 and R² below 0.5, demonstrating 
its limited ability to model the non-linear relationships between acoustic features 
and perceived voice handicap. 



Error analysis showed that the models were most accurate for samples with 
moderate VHI scores (40–80) and slightly less accurate at the extremes. This 
may reflect either the subjective variability in self-reported scores or the 
acoustic ambiguity in very mild or very severe disorders. 
 
We also visualized the correlation between key features and VHI scores. 
Features such as shimmer variation, MFCC coefficients (especially MFCC1 
and MFCC3), and HNR showed strong positive or negative correlations with 
the predicted outcomes. A scatter plot of predicted vs. actual VHI scores 
showed that most predictions clustered along the diagonal line, indicating 
successful regression. 
 
Discussion 
The present study demonstrates that acoustic parameters extracted from 
sustained vowel phonation can effectively predict Voice Handicap Index (VHI) 
scores using machine learning regression models. Among the models tested, 
Random Forest Regression exhibited the best performance, achieving an R² 
value of 0.78 and a mean absolute error (MAE) of 8.7 on the test set. This result 
aligns with the growing body of evidence that supports the viability of non-
invasive, voice-based digital biomarkers in quantifying voice impairment and 
related functional limitations. 
 
A key insight from the analysis is that traditional features such as jitter, shimmer, 
harmonics-to-noise ratio (HNR), and spectral slope—long employed in clinical 
voice assessment—retain strong predictive power when paired with ensemble 
machine learning algorithms. The interpretability of tree-based models further 
enhances their translational potential, as clinicians can identify which acoustic 
parameters most strongly influence predicted VHI scores, allowing for more 
personalized intervention strategies. Interestingly, features associated with 
frequency perturbation (e.g., jitter and shimmer) had higher feature importance 
weights, suggesting that microvariations in pitch stability may serve as 
particularly sensitive indicators of vocal dysfunction from the patient’s 
perspective. 
 
Moreover, the finding that Gradient Boosting and Support Vector Regression 
models performed competitively, albeit with slightly lower accuracy, suggests 
that the relationship between acoustic signal characteristics and subjective 
voice handicap perception is nonlinear but learnable with sufficiently complex 
architectures. These results underscore the importance of model selection and 
hyperparameter optimization in voice-related predictive tasks. 
 
This work adds to the limited but rapidly expanding literature at the intersection 
of voice pathology and machine learning. Previous studies have predominantly 
focused on binary classification of pathological versus normal voices. In 



contrast, our study emphasizes continuous score prediction of self-reported 
disability, offering a more nuanced understanding of voice disorders that 
captures gradations of severity. The use of VHI—a validated and widely 
adopted instrument that incorporates functional, emotional, and physical 
dimensions—strengthens the clinical relevance of the approach. 
Nonetheless, several limitations warrant consideration. First, while the VOICED 
dataset is publicly accessible and diverse in pathology types, its size remains 
modest by machine learning standards, potentially limiting the generalizability 
of the models. Additionally, the reliance on sustained vowel phonation, although 
useful for standardization, may not fully capture the dynamic and prosodic 
elements of connected speech, which are often impaired in real-world 
communication scenarios. The inclusion of running speech and spontaneous 
dialogue samples in future datasets could further enrich model input and 
improve ecological validity. 
 
Another limitation involves the use of self-reported VHI scores as ground truth. 
While VHI is a validated instrument, subjective measures can be influenced by 
psychological factors, such as anxiety or self-awareness, that may not directly 
correspond to acoustic anomalies. Future studies may benefit from multi-label 
training targets incorporating clinician-rated measures (e.g., GRBAS scale) 
alongside patient-reported outcomes to create more robust ground truth 
representations. 
 
The clinical implications of this work are significant. If integrated into mobile 
health (mHealth) platforms, such predictive models could enable remote voice 
monitoring, early detection of relapse or deterioration in chronic voice disorders, 
and real-time feedback for voice therapy. This would be particularly valuable in 
resource-limited regions or among populations with limited access to 
laryngology specialists. Additionally, such tools could augment telemedicine 
practices in otolaryngology by providing objective acoustic analysis alongside 
perceptual assessments during virtual consultations23. 
 
Looking forward, further efforts should aim to incorporate deep learning 
approaches that can automatically learn latent vocal representations from raw 
audio. Combining convolutional and recurrent neural architectures may allow 
for modeling of both spectral and temporal dynamics of disordered voice. 
Moreover, incorporating demographic variables (age, gender), language 
background, and psychological metrics may help personalize predictions and 
enhance fairness across diverse populations24. 
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In conclusion, our findings support the hypothesis that machine learning models 
trained on acoustic features can approximate self-perceived voice handicap 
with reasonable accuracy. As computational voice analysis continues to mature, 
it is poised to become a vital tool in the armamentarium of voice disorder 
diagnosis and management. 
 
Conclusion 
This research successfully applied machine learning regression models to 
predict Voice Handicap Index (VHI) scores using acoustic features from voice 
recordings. Among the tested models, the Gradient Boosting Regressor 
showed the best performance, with an average error of fewer than 10 points. 
 
Our study provides promising evidence for the use of AI-driven tools in voice 
disorder assessment, especially in settings where access to specialized clinical 
evaluation is limited. With further refinement and validation, such tools could 
serve as valuable aids in early screening and longitudinal monitoring of voice 
health. 
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